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LETTER TO THE EDITOR

Inelastic magnetic scattering of circularly polarized x-rays

Stephen W Lovesey
ISIS Facility, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, UK

Received 24 April 1996

Abstract. Circular polarization in an x-ray beam incident on a magnetic material induces
a signal in the scattered beam from an overlap between charge and spin and current (linear
momentum) densities. The overlap cross section is the basis of most recent experiments with
x-ray beams performed to measure the Compton profile of unpaired electrons. Using the language
of correlation functions, standard in the interpretation of neutron scattering experiments, we
analyse the structure and content of the overlap cross section, including its behaviour in the
Compton limit of scattering. It is shown that invariance of the Hamiltonian describing the
electrons through a time-reversal operation and simultaneous reversal of the magnetic field leads
to a very valuable statement about the field and space-parity property of the cross section which
has implications for the execution of an experiment and interpretation of empirical data.

Experimental techniques using x-ray beams, generated by synchrotron sources, are rapidly
becoming very important methods for investigating the magnetic properties of materials
on an atomic scale of detail [1, 2]. When compared to well-established methods using
neutron beams x-ray techniques provide superior quality data in some cases, and there
are a few cases where there is no alternative technique. One example is spectroscopic data
derived by scattering a beam of hard x-rays, with an energy larger than all atomic resonance
energies of the constituents of the magnetic sample under investigation. Under appropriate
experimental conditions Compton scattering is realized; the intensity of Compton scattered
x-rays is centred at an energy transfer equal to the recoil energy of an electronε = (h̄k)2/2m

wherem is the mass of an electron andk is the magnitude of the change on scattering in the
wave vector of the x-rays. The distribution of intensity about the recoil energy, often called
the Compton profile, is directly related, via a Radon transform, to the momentum density
of the electrons participating in the inelastic and incoherent scattering process. Today, large
sets of very high quality data are obtained, and confronted with predictions from state-of-
the-art theories of electrons in magnetic materials [3, 4]. As confidence grows in the method
of inelastic magnetic scattering it is used to investigate increasingly complicated magnetic
materials [5]. In consequence, it is important to firmly establish the exact nature of the
atomic information which can be derived from a measured signal and Compton profile. To
some extent, this is related to the method used to discriminate between magnetic scattering
and the much more intense charge scattering.

A favoured method is to measure the contribution to the scattered signal induced by
a component of circular polarization in the primary x-ray beam. This contribution is an
overlap of charge and magnetic components of the amplitude for scattering. The overlap
produces a larger intensity than the purely magnetic signal, it is proportional to the sign of
the magnetic component of the amplitude, and it can be modulated in sign and magnitude
by modulating the circular polarization in the primary beam. Regrettably, the latter is
technically very demanding, at least for the moment. Less demanding, and in principle
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leading to the same result, is to reverse the polarity of the net magnetization of the sample
by application of an external magnetic field.

The signal in the secondary beam produced by the induced overlap of charge and
magnetic amplitudes is described by a partial differential cross section proportional to the
mean helicity of the primary beam,P2, and a linear combination of power spectra from
overlap of charge and spin densities and charge and current (linear momentum) densities.
Let us label electrons by the indexj , and denote the position, linear momentum and spin
operators byR, p ands, respectively. The charge, current and spin densities appearing in
the cross section are,

n(k) =
∑

j

exp(ik · Rj ) T (k) = (−i/h̄k2)
∑

j

(k × pj ) exp(ik · Rj )

S(k) =
∑

j

sj exp(ik · Rj ).
(1)

Note that the Hermitian conjugate{n(k)}+ = n(−k), and the identity is also satisfied by
T (k) andS(k) since they are built from products of commuting Hermitian operators. The
operatorsT (k) and S(k) occur in the standard interpretation of neutron scattering by a
magnetic material [6].

The power spectra in the induced overlap cross section are formed with Hermitian linear
combinations of products ofn(k), S(k) and T (k); it is convenient to define correlation
functions

Fs(k, t) = 〈n+(k)S(k, t) + S+(k)n(k, t)〉
Fm(k, t) = 〈n+(k)T (k, t) + T +(k)n(k, t)〉. (2)

In these expressions angular brackets denote a thermal average value, andn(k, t) is the
Heisenberg operator formed fromn(k) ≡ n(k, 0), and similarly forS(k, t) and T (k, t).
Because

{F (k, t)}∗ = F (k, −t) (3)

the power spectrum

R(k, ω) = (1/2πh̄)

∞∫
−∞

dtF (k, t) exp(−iωt) (4)

is purely real; the latter property is anticipated becauseR(k, ω) is a measured response
function. The conjugate variable in the power spectrum,ω, is the change in frequency of
the x-rays, i.e.ω 6= 0 corresponds to inelastic scattering.

The amplitude for inelastic scattering of x-rays by a magnetic material has been derived
by a systematic application of perturbation theory for scattering by a bound electron. The
published amplitude contains all terms up to those quadratic in electron spin and momentum
operators [7]. Here, we use the cross section derived from terms linear in these operators,
which dominate at modest x-ray energies; it is a sum of various cross sections, including
those for pure charge and pure magnetic scattering proportional to power spectra of〈n+n〉,
〈S+

α Sβ〉 and〈T +
α Tβ〉, and the induced overlap cross section, with dimension (area/energy),

(E′/E)P2r
2
e (E/2mc2){Bs · Rs(k, ω) + Bm · Rm(k, ω)}. (5)

In this expression,re is the classical radius of an electron, andE = h̄cq is the energy of
the primary beam. The vectorsBs andBm are linear combinations of unit vectorsq̂ and
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q̂′ (k = q − q′) for the primary and secondary beams, weighted by the cosine of the angle
θ through which the x-rays are deflected anda = (1 + q ′/q)/2;

Bs = q̂′(1 − a + (cosθ − a) cosθ) + q̂′(3a cosθ − 2 cosθ − a)

Bm = −(k2/q2)
(1 + cosθ)

(cosθ + q ′/q)
(q̂ + q̂′ cosθ).

A derivation of (5) is found in [1, 2]; an earlier discussion of its structure in the Compton
limit, to which we turn later, is found in [8]. Here, we have made one small change to
the presentation in [1, 2] by expressing the charge-current overlap contribution in terms
of T (k), which is slightly more convenient to use in the present setting than the related
operator chosen previously.

The invariance of the Hamiltonian that describes the electrons in the sample through
the time-reversal operation, in which all velocities (including those associated with the
spinning of the electrons) are reversed, gives a powerful statement aboutF (k, t). Let
A(H) be an operator, which in general depends on the external magnetic field,H, and
A′ the operator formed fromA by the operation of time reversal. The HamiltonianH(H)

satisfiesH(H) = H′(−H). For our purposes the key identity is [9],

〈A〉H = 〈{A′}+〉−H . (6)

By way of orientation consider its application to the total spin magnetizationM =
S (k = 0), namely,

〈M 〉H = −〈M 〉−H

where we have used the property ofs that it is time odd ands′ = −s+ = −s. If the
material is paramagnetic, the identity states that the field-induced magnetization vanishes
as the field is reduced to zero. For a state of spontaneous magnetization〈M 〉 is non-zero
in the limit H = 0, and the identity states the polarity of the spontaneous magnetization is
determined by the polarity ofH.

In applying (6) to correlation functionsFs(k, t) and Fm(k, t) we make use of the
relations

{n(k)}′ = {n(k)}+ {S(k)}′ = −{S(k)}+
{T (k)}′H = −{T (k)}+−H

in which p = mv(H). The important results are,

Fs(k, t) = 〈S+(k)n(k, t)〉H − 〈S+(−k)n(−k, t)〉−H

Fm(k, t) = 〈T +(k)n(k, t)〉H − 〈T +(−k)n(−k, t)〉−H .
(7)

Hence, the correlation functionsFs and Fm are differences between correlation functions
evaluated with opposite values ofk and H, and the time variable is the same in the two
parts.

Spatial properties of the sample exert an influence on the dependence of its correlation
functions to the sign ofk, the conjugate variable in a spatial Fourier transform. If the
sample is uniform in space, which rules out microscopic samples and samples subject
to inhomogeneous fields, real-space correlation functions depend on the distance between
the two operators and not their individual positions. The spatial Fourier transform of
such a correlation function is unchanged on replacingk by −k when the positions of
the operators are also invariant through inversion, i.e. the sample possesses even space-
parity and translational invariance (e.g. sites on different sublattices of an h.c.p. structure,
adopted by many elemental rare earth metals, and magnetic moments forming a structure
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incommensurate with the lattice periodicity are not interchanged by inversion). In the event
that the correlation functions inFs andFm do not depend on the sign ofk these functions
change sign on reversing the polarity of the applied field. In the general case, however, to
change the signs ofFs andFm it is necessary to reverse both the field andk. Under this
combined operation the cross section is unchanged, as might be anticipated, for the vectors
Bs andBm change sign whenq andq′ are replaced by−q and−q′, respectively; rotating
the target sample through 180◦ reverses the sign ofk relative to its axes.

It is to be noted that the total cross section contains other overlap terms which do not
depend on the degree of circular polarization in the primary beam [1, 2]. The terms to
which we refer are anti-Hermitian linear combinations of the overlap ofn, S andT . The
corresponding correlation functions are sums ofk and H reversed correlation functions
and, unlike the correlation functions in the polarization-induced overlap, do not change sign
under reversal ofk andH.

Another representation ofFs andFm can be found using the identity [9],

〈A1A2(t)〉 = 〈A2A1(ih̄β − t)〉 (8)

where(1/β) is the temperature in units of Boltzmann’s constant. This is useful in calculating
Fs andFm because for each function one need calculate only a single correlation function.
Also, (8) gives a physical interpretation to the effect of reversing the polarity ofH, e.g. a
spin excitation reverses its helicity.

Lastly, we discuss the behaviour of the induced overlap cross section in the Compton
limit. Broadly speaking, two approaches to the task of calculating the Compton limit and
corrections to it, often referred to as final state effects [10], have appeared in the literature.
One approach, traditionally used in the interpretation of data on charge distributions, for
which the experimental technique is well established [11, 12, 13], relies on the calculation
of specific matrix elements and a physical picture of Compton scattering in which the
final state of the electron is represented by a plane wave. A second approach is to couch
arguments in terms of correlation functions, and no explicit reference to a final state in
the form of a plane wave. Common to both approaches is the premiss of no discernible
information on spatial correlations between electrons, i.e. Compton scattering is incoherent.
In the incoherent approximation to the scattering process one finds, for example,

〈T +(k)n(k, t)〉H = (i/h̄k2)
∑

j

mj 〈(k × vj )Ij (k, t)〉 (9)

where the operator,

Ij (k, t) = exp(−ik · Rj ) exp{ik · Rj (t)} (10)

arises also in〈S+n〉, and〈n+n〉 which describes pure charge scattering. The two operators
in (10) can be combined, using the Campbell–Baker–Hausdorff formula, to giveIj equal to
a single exponential with an argument represented as a power series int . This form forIj is
ideal for implementing the second facet of the Compton limit, namely a very brief duration
of the scattering event in which the struck particle barely moves and its potential energy,
a function of position, is unchanged to a good approximation. Calculating the argument of
the exponential up to ordert2 we find,

Ij (k, t) = exp{it (k · vj + εj /h̄) + 1
2it2k · aj + . . .} (11)

werea is the acceleration operator of the struck electron.
The Compton limit of scattering is obtained from (11) by discarding terms int beyond

the leading term. At this level of approximation, usually referred to as the impulse
approximation [12], the current correlation function (9) and the correspondingFm(k, t) share
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the property that{Fm(k, t)}∗ is equal tominusFm(k, −t) and this leads to apurely imaginary
power spectrum (response function). Since this contradicts the Hermitian character of
Fm(k, t), which lies behind (3), we conclude that the Compton limit ofFm(k, t) is zero. This
finding is in accord with work based on the traditional interpretation of Compton scattering
found in [1] and later [14, 15]. If we work with (11) to the order oft2 the corresponding
Fm(k, t) is not necessarily zero. The Compton limit of the correlation function for the
overlap of charge and spin densities is the sum of∫

dq exp{(it/h̄)(ε + h̄2k · q/m)}〈sδ(q − mv/h̄)〉
evaluated for each electron. The corresponding power spectrum is the Radon transform of
the spin-weighted momentum density, and its development in the language of band theory
is given in [2].

Our finding thatFm(k, t) is zero in the Compton limit of scattering is in accord with
both other theoretical developments already mentioned and empirical findings [16]. An even
earlier theoretical development, using the language of correlation functions, predicted a non-
zero value [17]. It can be shown that the flaw in the development lies in the representation of
T (k) in terms of the orbital magnetization density, leading to incorrect symmetry properties
in the Compton limit and thus a non-zero value for the overlap correlation function; in terms
of Trammell’s expansion [6] forT (k) the essential missing terms are those which vanish
for elastic scattering.

Useful discussions have been held with Dr S P Collins and Dr K N Trohidou and her
colleagues. In the course of our work we received a draft version of [15] from the authors.
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